[1] 曹立宇,田壮壮,祝利利,等.WHO(2020)女性生殖系统肿瘤分子分型在子宫内膜癌中的应用与临床意义[J].临床与实验病理学杂志,2024,40(3):279-284. [2] 中国研究型医院学会妇产科学专业委员会,王建六,王志启,等.子宫内膜癌分子分型临床应用中国专家共识(2024年版)[J].中国实用妇科与产科杂志,2024,40(6):638-644. [3] 符玉蕾,何涓,王艳,等.子宫内膜癌合并代谢综合征患者的临床特征及预后分析[J].中国性科学,2024,33(6):66-69. [4] 崔靖,郭冉,信瑞强.基于ADC影像组学的机器学习模型预测子宫内膜癌肌层浸润深度的价值[J].磁共振成像,2025,16(03):77-82. [5] 杨川桦,姜萍,谢刚.子宫内膜癌增强MRI定量参数变化与临床特征的关系及对预后的预测价值分析[J].中国CT和MRI杂志,2024,22(3):148-151. [6] 刘爱连. MRI新技术在子宫内膜癌诊疗中的应用进展[J].中华放射学杂志,2024,58(11):1264-1272. [7] 中国抗癌协会妇科肿瘤专业委员会.子宫内膜癌诊断与治疗指南(2021年版)[J].中国癌症杂志,2021,31(6):501-512. [8] 鲁琦,张震宇.国际妇产科联盟2018年版子宫颈癌分期标准的解读[J].中华妇产科杂志,2019,54(10):718-720. [9] Meyer HJ,Martin M,Denecke T.DWI of the Breast - Possibilities and Limitations.Diffusionsbildgebung der Mamma M?glichkeiten und Limitationen der DWI[J].Rofo.2022,194(9):966-974. [10] Saito Y,Morine Y,Yamada S,et al.The relationship between the tumor microenvironment of hepatocellular carcinoma-including cancer-associated fibroblasts and tumor-associated macrophages-and apparent diffusion coefficient[J].Am J Cancer Res.2025,15(4):1747-1758. [11] Zheng S,Yang Z,Du G,et al.Discrimination between HER2-overexpressing,-low-expressing,and-zero-express-ing statuses in breast cancer using multiparametric MRI-based radiomics[J].Eur Radiol.2024,34(9):6132-6144. [12] Arian A,Ahmadi E,Gity M,et al.Diagnostic value of T2 and diffusion-weighted imaging(DWI)in local staging of endometrial cancer[J].J Med Imag-ing Radiat Sci.2023,54(2):265-272. [13] Zhai D,Wang X,Wang J,et al.Apparent Diffusion Coefficient on Diffusion-Weighted Magnetic Resonance Imaging to Predict the Prognosis of Patients with Endo-metrial Cancer:A Meta-Analysis[J].Reprod Sci.2024,31(9):2667-2675. [14] Kakkar C,Gupta K,Jain K,et al.Diagnostic Accuracy of Calculated Tumor Volumes and Apparent Diffusion Coe-fficient Values in Predicting Endometrial Cancer Grade[J].Int J Appl Basic Med Res.2022,12(1):37-42. [15] Ma X,Xu L,Ma F,et al.Whole-tumor apparent diffusion coefficient histogram analysis for preoperative risk stra-tification in endometrial endome-trioid adenocarcinoma[J].Int J Gynaecol Obstet.2024,164(3):1174-1183. [16] 赵婧,杨帆,任继鹏,等.DWI影像组学模型预测子宫内膜癌微卫星不稳定状态:与ADC值的对比研究[J].放射学实践,2024,39(8):1067-1071. [17] 牛永超,周芳,赵丹丹,等.基于DWI深度学习特征的预测模型评估子宫内膜癌微卫星不稳定状态的价值[J].中国医学影像学杂志,2024,32(9):922-927. [18] 杨小峰,顾庆春,徐玲玲,等.全子宫MRI影像组学特征术前预测Ⅱ型子宫内膜癌的可行性研究[J].中国CT和MRI杂志,2023,21(8):121-124. [19] 林培培,周晓冬,宋伟.子宫内膜癌肿瘤体积与子宫体积比值联合肿瘤ADC值对病理分级的预测价值[J].实用医学杂志,2023,39(23):3071-3075.